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Abstract: We begin a study of higher-loop corrections to the dilatation generator of N =

4 SYM in non-compact sectors. In these sectors, the dilatation generator contains infinitely

many interactions, and therefore one expects very complicated higher-loop corrections.

Remarkably, we find a short and simple expression for the two-loop dilatation generator.

Our solution for the non-compact su(1, 1|2) sector consists of nested commutators of four

O(g1) generators and one simple auxiliary generator. Moreover, the solution does not

require the planar limit; we conjecture that it is valid for any gauge group. To obtain the

two-loop dilatation generator, we find the complete O(g3) symmetry algebra for this sector,

which is also given by concise expressions. We check our solution using published results

of direct field theory calculations. By applying the expression for the two-loop dilatation

generator to compute selected anomalous dimensions and the bosonic sl(2) sector internal S-

matrix, we confirm recent conjectures of the higher-loop Bethe ansatz of hep-th/0412188.
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1. Introduction

Our understanding of the conjectured AdS-CFT correspondence [1 – 3] has deepened dra-

matically following the observation that strings with large quantum numbers can be

mapped to certain subsets of operators in the gauge theory [4, 5]. Direct progress has

been made in testing the correspondence perturbatively by comparing anomalous dimen-

sions of gauge theory operators and energies of classical and quantum corrected string

solitons [6 – 14]. For reviews see [15 – 20].

These comparisons have used and motivated much progress in computing gauge the-

ory anomalous dimensions. Beginning with the proof of one-loop integrability in the so(6)

(scalar) sector1 [23], computations of anomalous dimensions in planar N = 4 SYM have

been greatly simplified by mapping single-trace gauge theory operators to states of inte-

grable closed spin chains. This mapping allows the use of a Bethe ansatz. In [24], inte-

grability of the complete one-loop planar gauge theory was proven, and the corresponding

Bethe ansatz was presented. After evidence of integrability was obtained via higher-loop

computations of the dilatation generator in compact sectors [25, 26], higher-loop Bethe

ansätze were proposed at various orders and sectors [27 – 29]. This line of research culmi-

nated with a proposal for the all-loop asymptotic psu(2, 2|4) Bethe ansatz [30]. A proof

of this ansatz assuming integrability was found recently [31]. Parallel developments have

1Integrability in four-dimensional Yang-Mills theory was first observed by Lipatov [21, 22].

– 2 –



J
H
E
P
0
2
(
2
0
0
6
)
0
5
5

occurred on the string side. Classical string theory in AdS5 × S5 was shown to be inte-

grable [32, 33], integrability was used to solve the classical spectrum in terms of algebraic

curves [34, 35], and Bethe ansätze for quantum strings were proposed [36, 29, 30].

Despite all this progress and much evidence, there is no rigorous proof of higher-loop

integrability for any non-compact sector of the gauge theory. Finding the dilatation gener-

ator would be a first step towards a proof. However, even that step seems intractable for

non-compact sectors. Completing a direct diagrammatic calculation is realistic only at low

loop order, as was done at two loops for the fermionic sl(2) sector in [37]. A more promising

approach to higher loops is Beisert’s method, which takes full advantage of superconformal

symmetry. However, extending Beisert’s method of computing the dilatation generator

from one loop for the complete theory [38, 39] to three loops for the su(2|3) sector [26],

depended on compactness. A large computer algebra computation was essential. Because

the dilatation generator in non-compact sectors is built from infinitely many interactions,

a brute force computation of this kind becomes impossible.

In this paper, we overcome this obstacle by developing techniques for higher-loop non-

compact sectors. Only using constraints from Feynman diagrammatics and superconfor-

mal symmetry, we compute the two-loop dilatation operator for the non-compact su(1, 1|2)
sector. We also find the corrections to this sector’s symmetry algebra up to O(g3). We

introduce an auxiliary generator that satisfies special commutation relations with the clas-

sical and half-loop symmetry generators. This extension of the symmetry algebra enables

us to find and verify solutions of the symmetry constraints at one and one-half loops only

using the commutation relations of the extended algebra at zero and at one-half loops. Via

our method, higher-loop computations reduce to straightforward algebraic manipulations

of commutators. This can be done efficiently even without a computer.

For our computation, it is essential that the su(1, 1|2) sector has a hidden psu(1|1)2
symmetry [39], which adds tight restrictions. The representation for the psu(1|1)2 symme-

try is trivial at leading order and has an expansion in odd powers of g, which is proportional

to
√

λ. The generators, labeled
−→
T and

←−
T ,2 change the length of the spin chain, reflect-

ing the dynamic aspect of the full psu(2, 2|4) spin chain.
−→
T and

←−
T anti-commute to the

dilatation operator. Therefore, we only need one and one-half loops to find the two-loop

dilatation operator. More precisely, using a subscript n for the O(gn) corrections,

1

2
δD4 =

{−→
T3,

←−
T1

}

+
{−→

T1,
←−
T3

}

. (1.1)

The O(g3) solution is built only from the leading (non-vanishing) order representations

of the generators and the auxiliary generator, h, that acts using the harmonic numbers.

Schematically, we have3

T3 = ± [T1, x] ,

2Actually, there are four generators,
−→
T ± and

←−
T ±, but the additional sign index is unimportant for the

points we make here.
3The right side of the second equation actually has two terms like the one shown, using the two pairs of

generators with opposite signs and directions of arrows.
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x ∼
{−→

T1,
[←−
T1, h

]}

. (1.2)

It follows that δD4 is built only from the T1’s and h.

Our solution lifts consistently and naturally to non-planar N = 4 gauge theory as well4,

that is for any choice of the gauge group. In particular, it includes wrapping interactions.

These are non-planar contributions to the dilatation generator that survive the planar limit

by wrapping around short operators [28]. Because supersymmetry relates shorter states to

longer states, wrapping interactions do not contribute until four loops [26, 30]. However,

generalizing this solution for wrapping interactions to higher loops would provide a missing

piece for the comparisons between gauge and string theory. The proposed Bethe ansätze

are oblivious to corrections from wrapping interactions5.

We also find compelling evidence that integrability persists at two loops in non-compact

sectors. The two-loop dilatation generator generates the same bosonic sl(2) subsector S-

matrix as assumed for the Bethe ansatz in [29], and the same anomalous dimensions as

computed using this Bethe ansatz in [29]. A complementary approach to confirming this

Bethe ansatz will appear in [42]. Evidence for two-loop integrability in the fermionic sl(2)

sector was given in [37].

Section 2 introduces the su(1, 1|2) sector and the residual symmetry algebra. Section 3

discusses the O(g2) solution, and section 4 discusses the O(g3) solution and presents the

two-loop dilatation generator. For simplicity, we assume planarity until section 4.4, and

in that section we present the lift to the finite-N solution. In section 5, after verifying

that our solution predicts the same anomalous dimensions as those of the field theory

calculations of [25, 43, 44, 37], we summarize the applications of the solution to compute

the bosonic sl(2) subsector S-matrix and some anomalous dimensions. We conclude and

discuss directions for further research in section 6. The appendix presents details about the

symmetry algebra and proofs of our solution. Finally, we use many results and notations

of [39].

2. The su(1, 1|2) sector

As explained in [39], it is consistent to restrict to various sectors of the states of N = 4

SYM. Under such a restriction, the full psu(2, 2|4) algebra splits into three components.

One component annihilates all the states in the subsector, and the second component maps

states in the subsector out of the subsector. The third component, a subalgebra, acts within

the subsector non-trivially, and gives the sector its name. For the case we consider in this

work, this subalgebra is u(1)2 n (psu(1, 1|2) × psu(1|1)2) n u(1). The u(1)2 consists of two

external automorphisms, the length L and the hypercharge B. The u(1), is the quantum

correction to the dilatation generator, δD, which appears as the central charge for both

psu(1, 1|2) and psu(1|1)2.6 Furthermore, the psu(1|1)2 acts trivially classically. Now we

4I thank Niklas Beisert for explaining this to me.
5For recent promising work on the nature of wrapping interactions in AdS-CFT see [40]. Also see [41].
6We label this sector with su(1, 1|2) since this equals psu(1, 1|2) n u(1), which is the minimal algebra

containing the full manifest symmetry.
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describe the restriction to this subsector and the corresponding symmetry algebra, and we

present the leading non-vanishing actions of the algebra on the states of the subsector.

2.1 The restriction to the su(1, 1|2) sector

To restrict to this sector, we must set the classical dimensions of states simultaneously

equal to the following linear combinations of the eigenvalues of the Cartan generators of

the psu(2, 2|4) algebra [39],

D0 = s1 +
1

2
q2 + p +

3

2
q1 = s2 +

1

2
q1 + p +

3

2
q2 (2.1)

Here [q1, p, q2] are the Dynkin labels of the su(4) subalgebra and [s1, s2] are the Dynkin

labels of the Lorentz algebra. Combined with the bounds given by the field content, this

implies that D0 also satisfies

D0 = L − B + s1 = L + B + s2. (2.2)

2.2 The psu(1, 1|2) algebra

We introduce a notation for the subset of the psu(2, 2|4) generators that generates the

psu(1, 1|2) algebra,

J0(g) = −L + 2D0 + δD(g), R0 = R2
2 − R3

3,

J++(g) = P22(g), J−−(g) = K22(g), R↑↑(g) = R3
2, R↓↓(g) = R2

3,
−→
Q+↓(g) = Q2

2(g),
←−
Q−↑(g) = S2

2(g),
−→
Q+↑(g) = Q3

2(g),
←−
Q−↓(g) = S2

3(g),
←−
Q+↑(g) = Q̇22(g),

−→
Q−↓(g) = Ṡ22(g),

←−
Q+↓(g) = Q̇23(g),

−→
Q−↑(g) = Ṡ32(g). (2.3)

L is the length operator; it multiplies a state composed of L fundamental fields by L.

L commutes with all of the psu(1, 1|2) generators. In this sector, it satisfies

L = L2
2 − L̇2

2 − 2R1
1. (2.4)

Lα
β and L̇α̇

β̇
are Lorentz rotations. D0 is the classical dilatation generator, and δD is

its quantum correction. δD’s leading term is at O(g2), and its expansion includes even

powers of g only. The remaining generators appearing on the right side of (2.2) are the

following psu(2, 2|4) generators: su(4) internal R-symmetry rotation generators R, Lorentz

translations and boosts P and K, and fermionic supertranslations and superboosts Q, Q̇,

S, and Ṡ. Appendix D of [39] gives a complete description of the full algebra.

Note that the superscript signs correspond to su(1, 1) charge (descended from the

su(2, 2) Lorentz subalgebra). A generator adds dimension equal to 1
2 (-1

2 ) of the number of

its plus (minus) signs. Similarly, vertical arrows correspond to integer su(2) R-charge, and

horizontal arrows correspond to half-integer hypercharge, B. Throughout this paper we

will work in a basis such that hermitian conjugation requires switching signs and reversing

arrows simultaneously. Generators without any arrows or a sign are hermitian.
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The psu(1, 1|2) algebra is given in appendix A. However, many commutators7 can be

inferred directly from the notation because the three types of charges are conserved. These

conservation rules immediately imply that many commutators vanish. Also, J0 measures

su(1, 1) charge, and R0 measures su(2) charge.

2.3 The psu(1|1)2 algebra

The psu(1|1)2 algebra is generated by

−→
T +(g) = Q̇14(g),

←−
T−(g) = Ṡ14(g),

−→
T−(g) = S1

1(g),
←−
T +(g) = Q1

1(g). (2.5)

As before, the horizontal arrows correspond to hypercharge. However, these generators

carry no su(1, 1) charge, and the sign corresponds instead to their commutators with the

external automorphism L,
[

L,T±(g)
]

= ±T±(g). (2.6)

The non-zero commutators are

{−→
T +(g),

←−
T−(g)

}

=
1

2
δD(g),

{−→
T−(g),

←−
T +(g)

}

=
1

2
δD(g). (2.7)

Any commutator between non-conjugate T’s vanishes, including the squares of the T.

The product structure of the full symmetry algebra will be used many times in the rest of

this work: the generators of psu(1, 1|2) and psu(1|1)2 commute with each other.

2.4 Fields and states

The fields in this sector are derivatives D = D22 acting on the fermions
−→
ψ = Ψ42 and←−

ψ = Ψ̇1
2, or the bosons φ↓ = Φ34 and φ↑ = Φ24. We denote k derivatives by a subscript k,

φ
l
k ∼ Dkφl,

←→
ψk ∼ Dk←→ψ , (k ≥ 0). (2.8)

The representation of the symmetry algebra acts on a spin chain. The states of the

spin chain are tensor products

|X1X2 . . . Xn〉 where Xi ∈
{

φ
l
k,

←→
ψ k

}

. (2.9)

A generic state is a linear combination of these tensor products, with the cyclic identification

|X1 . . . XiXi+1 . . . Xn〉 = (−1)(X1...Xi)(Xi+1...Xn)|Xi+1 . . . XnX1 . . . Xi〉 (2.10)

(−1)AB is −1 if both A and B are fermionic, and 1 otherwise.

7Note that, for simplicity, we call both commutators and anti-commutators, commutators; of course, the

“commutator” of two fermionic generators is actually an anti-commutator.
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2.5 The leading order representation

For the leading order representation of the symmetry algebra, at O(g0), the generators

have one-site to one-site vertices. That is, the generators’ action on the spin chain is a

tensor product (given by the sum of its action on each individual site). Also, every time a

fermionic generator passes a fermionic field, we must add a factor of −1. The non-vanishing

actions for J++,
−→
Q+↑, and R↑↑ are

J++
0 |φl

k〉 = (k + 1)|φl
k+1〉, J++

0 |←→ψ k〉 =
√

(k + 1)(k + 2)|←→ψ k+1〉,
−→
Q0

+↑|φ↓
k〉 =

√
k + 1|−→ψ k〉,

−→
Q0

+↑|←−ψ k〉 = −
√

k + 1|φ↑
k+1〉,

R↑↑|φ↓
k〉 = |φ↑

k〉. (2.11)

The remaining parts of the leading order representation can be computed using hermitian

conjugation and the algebra given in appendix A. To find hermitian conjugates, it is

simplest to use the (tensor product of the) diagonal metric

〈φ↓
m|φ↓

n〉 = δmn, 〈φ↑
m|φ↑

n〉 = δmn, 〈−→ψ m|−→ψ n〉 = δmn, 〈←−ψ m|←−ψ n〉 = δmn. (2.12)

Then the condition for two operators, J and J†, to be hermitian conjugates is

〈X ′
1 . . . X ′

m|J|X1 . . . Xn〉 = 〈X1 . . . Xn|J†|X ′
1 . . . X ′

m〉. (2.13)

2.6 Constraints from Feynman rules

Before beginning to discuss quantum corrections to the symmetry algebra, we review the

constraints from Feynman diagrams [39]. Most simply, only connected interactions appear.

For the planar theory, this implies that interactions will involve replacing a set of adjacent

spins of the spin chain with a new set, not necessarily of the same length. In fact, power

counting implies that the O(gn) term of a generator is the sum of interactions involving a

total of up to (n+2) initial and final spin sites. Therefore, quantum corrections will deform

the representation from the tensor product structure described in the previous subsection.

The symmetry algebra for the su(1, 1|2) sector implies that for even n, the length of the

spin chain is unchanged, and for odd n, interactions change the length of the spin chain by

one.

Feynman rules restrict to parity (or charge conjugation) even interactions. In terms of

the spin chain, a parity even generator satisfies, for arbitrary fields Xj ,

J|X1 . . . Xi〉 = |X ′
1 . . . X ′

f 〉 ⇒ (−1)i+fi(fi−1)/2J|Xi . . . X1〉 = (−1)f+ff (ff−1)/2|X ′
f . . . X ′

i〉
(2.14)

where fi and ff are the number of fermions in the initial and final states.

Finally, we use the normalization for the coupling constant

g2 =
g2

YM
N

8π2
, (2.15)

where N is the rank of the gauge group.

– 7 –
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2.7 The O(g1) solution

Applying the rules from the previous subsection, at O(g1), the corrections will entail re-

placing one spin site with two, or vice-versa. For instance, a one-site to two-site generator

T would act on a generic state as:

T|X1 . . . Xi . . . Xn〉 =
∑

a, b

cX1

ab |YaYbX2 . . . Xi . . . Xn〉 + · · ·+

(−1)(X1...Xi−1)T
∑

a, b

c
Xi

ab |X1 . . . Xi−1YaYbXi+1 . . . Xn〉 + · · · , (2.16)

where Ya and Yb run over all fields. For fixed i, only a finite number of the cXi

ab will be

non-zero.

Starting at this order, it is possible to construct interactions that vanish on closed spin

chain states because of the cyclic identification. These correspond to gauge transformations

in gauge theory. An example of a one-site to two-site gauge transformation satisfies, for all

fields Xi and a fixed field Y ,

T|Xi〉 = |XiY 〉 − (−1)Y Xi |Y Xi〉. (2.17)

In fact, the symmetry algebra can be satisfied at this order only up to gauge transforma-

tions [39].

Only the psu(1|1)2 generators receive O(g) corrections since only they change the

length of the spin chain. The action of
−→
T +

1 on states composed of the
−→
ψ k was derived

in [39], and it is straightforward to generalize to the full solution by requiring commutation

with the psu(1, 1|2) algebra (up to gauge transformations).

−→
T1

+|φl
m〉 =

1√
2

m−1
∑

k=0

1√
k + 1

(

|−→ψkφ
l
m−1−k〉 − |φl

m−1−k

−→
ψk〉

)

,

−→
T1

+|−→ψm〉 =
1√
2

m−1
∑

k=0

√

m + 1

(k + 1)(m − k)
|−→ψk

−→
ψm−1−k〉,

−→
T1

+|←−ψm〉 =
1√
2

m−1
∑

k=0

√

m − k

(k + 1)(m + 1)

(

|−→ψk
←−
ψm−1−k〉 + |←−ψm−1−k

−→
ψk〉

)

+
1

√

2(m + 1)

m
∑

k=0

(

|φ↓
kφ

↑
m−k〉 − |φ↑

kφ
↓
m−k〉

)

. (2.18)

Up to a single minus sign in the last line,
←−
T1

+ follows from switching
−→
ψk and

←−
ψk in the

above expression for
−→
T1

+,

←−
T1

+|φl
m〉 =

1√
2

m−1
∑

k=0

1√
k + 1

(

|←−ψkφ
l
m−1−k〉 − |φl

m−1−k

←−
ψk〉

)

,

←−
T1

+|←−ψm〉 =
1√
2

m−1
∑

k=0

√

m + 1

(k + 1)(m − k)
|←−ψk

←−
ψm−1−k〉,

– 8 –
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←−
T1

+|−→ψm〉 =
1√
2

m−1
∑

k=0

√

m − k

(k + 1)(m + 1)

(

|←−ψk
−→
ψm−1−k〉 + |−→ψm−1−k

←−
ψk〉

)

− 1
√

2(m + 1)

m
∑

k=0

(

|φ↓
kφ

↑
m−k〉 − |φ↑

kφ
↓
m−k〉

)

. (2.19)

The other two psu(1|1)2 generators, the T−, can then be computed at this order via her-

mitian conjugation. Up to gauge transformations, and a rescaling of g, this solution is

completely fixed by the symmetry constraints.

3. Order g
2

At O(g2), δD and the psu(1, 1|2) generators receive quantum corrections. From (2.7), it is

straightforward to compute

δD2 = 2
{−→

T1
+,

←−
T1

−
}

= 2
{−→

T1
−,

←−
T1

+
}

. (3.1)

As first shown in [38], δD2 acts by projecting two adjacent sites onto modules of definite

psu(2, 2|4) “spin” j with coefficient h(j). h gives the harmonic numbers

h(k) =

k
∑

k′=1

1

k′
= ψ(k + 1) − ψ(1). (3.2)

The harmonic numbers will play an essential role in δD4 as well.

δD is the only generator we need to compute because, as we now explain, once we

know δD the full psu(1, 1|2)× psu(1|1)2 algebra’s action is fixed by group theory. Knowing

δD means knowing its eigenstates and eigenvalues. Multiplets are then formed by states

of equal eigenvalues, and the generators of psu(1, 1|2) × psu(1|1)2 must connect the states

of a multiplet with factors determined by group theory.

However, for our method of computing δD, it is essential to compute the perturbative

corrections to the psu(1, 1|2) generators. They are needed for constraining the one and one-

half loop psu(1|1)2 generators, which anti-commute to the two-loop dilatation generator.

Moreover, the solution we present below for the psu(1, 1|2) generators has an interesting

and simple structure. Next we present this solution and discuss its possible modifications

and its proof.

3.1 The solution

We define two auxiliary generators that play central parts in our solution. h is a one-site

generator of harmonic numbers. Its action is

h|φl
k〉 =

1

2
h(k)|φl

k〉, h|←→ψk 〉 =
1

2
h(k + 1)|←→ψk 〉. (3.3)

x is a two-site to two-site generator that we can write in two equivalent ways,

x =
{←−
T1

−,
[−→
T1

+, h
]}

−
{←−
T1

+,
[−→
T1

−, h
]}
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=
{−→

T−
1 ,

[←−
T +

1 , h
]}

−
{−→

T +
1 ,

[←−
T−

1 , h
]}

. (3.4)

The equality in (3.4) follows from (2.7), since

{←−
T1

−,
[−→
T1

+, h
]}

+
{−→

T1
+,

[←−
T1

−, h
]}

=
1

2
[δD2, h] , (3.5)

and the analogous equation for
−→
T1

− and its conjugate is satisfied. Because of this equality

in (3.4), x is hermitian.

Let X± represent J++, J−−, or the eight Q’s, where we retain only the su(1, 1) charge.

Then the solution of the symmetry and Feynman diagram constraints is

X±
2 = ±

[

X±
0 , x

]

+
[

X±
0 , y

]

. (3.6)

We present an outline of the proof that this satisfies the algebra relations in section 3.3

and more details in appendix B.

y is a two-site to two-site generator that commutes with B, D0 and the R’s. Commut-

ing all the generators of the su(1, 1|2)×psu(1|1)2 algebras with a generator such as y maps

one solution of the commutation relations to another. It corresponds to the first term in

the expansion of the similarity transformation

J 7→ UJU−1, U = 1 + g2y + · · · , i.e. J2 7→ J2 + [J0, y] . (3.7)

We require y to commute with the R’s and with B and D0 to preserve δD’s manifest

R-symmetry and δD’s eigenstates’ hypercharge and classical dimension assignments. To

maintain manifest consistency with the Feynman diagram rules, U ’s expansion must be in

even powers of n, consisting of (n
2 + 1)-site to (n

2 + 1)-site interactions. For anti-hermitian

(or vanishing) y, X+and X− are hermitian conjugates up to O(g2).

3.2 Freedom for the O(g2) solution

There are two possible sources of freedom for the solution at this order: interactions that

vanish on cyclic states (gauge transformations) and homogeneous solutions. We now ex-

clude the former and discuss the latter.

The requirement of even parity rules out the possibility of applying gauge transfor-

mations to the solution at this order, since generators are sums of two-site to two-site

interactions. This also implies that the algebra is satisfied exactly (not just modulo gauge

transformations).

However, at this point, we cannot rule out modification by a homogeneous solution.

Under this modification,

J++
2 7→ J++

2 + δJ++
2 ,

←→
Q2

+l 7→ ←→
Q2

+l + δ
←→
Q2

+l, (3.8)

and similarly for the hermitian conjugates. In order for the symmetry constraints to remain

satisfied, the δJ’s and δQ’s must not contribute to any commutator of the algebra. For

example,
[

δJ++
2 ,J−−

0

]

+
[

J++
0 , δJ−−

2

]

= 0. (3.9)
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We have not found any non-trivial homogeneous solutions, or ruled them out. However,

from the above discussion regarding δD, we conclude that once δD4 is found, this freedom

is fixed. We will find the solution for δD4 below. Since the O(g2) solution presented in

this section is consistent with it, this is the field theory O(g2) solution.

3.3 Discussion of the proof of the O(g2) solution

To prove the solution we must check that the commutators given in appendix A are satisfied

at O(g2). The proof is based upon substitution of the solution, elementary algebra, and

keeping track of powers of g. The commutators up to O(g1) and the identities presented in

appendix B.1 are also needed. In particular, many of the commutators are simplified since

the entire solution is hermitian and given by commutators of leading order generators and

x. In appendix B we verify a representative set of commutators. Here we do one example

in detail.

The commutator of the conjugate J’s

[

J−−,J++
]

= J0 (3.10)

has the O(g2) component

[

J−−,J++
]

2
=

[

J−−
2 ,J++

0

]

+
[

J−−
0 ,J++

2

]

= J0
2 = δD2. (3.11)

Expanding the solution for J++
2 yields8

J++
2 =

[

J++
0 , x

]

=
{←−

T1
−,

[−→
T1

+, j++
]}

−
{←−

T1
+,

[−→
T1

−, j++
]}

, (3.12)

where we have defined

j++ =
[

J++
0 , h

]

. (3.13)

Also, after defining

j−− = −
[

J−−
0 , h

]

, (3.14)

direct computation shows that
[

J−−
0 , j++

]

= −1

2
L. (3.15)

Using these identities we find,

[

J−−
0 ,J++

2

]

=
{←−

T−
1 ,

[−→
T1

+,
[

J−−
0 , j++

]

]}

−
{←−

T1
+,

[−→
T1

−,
[

J−−
0 , j++

]

]}

= −1

2

{←−
T1

−,
[−→
T1

+,L
]}

+
1

2

{←−
T1

+,
[−→
T1

−,L
]}

=
1

2

{←−
T1

−,
−→
T1

+
}

+
1

2

{←−
T1

+,
−→
T1

−
}

=
1

2
δD2 (3.16)

8We set y to zero without loss of generality.
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To reach the second to last line, we used (2.6), and for the last line (2.7) was needed. By

hermiticity,
[

J−−
2 ,J++

0

]

=
[

J−−
0 ,J++

2

]†
. (3.17)

So, finally we have,

[

J−−,J++
]

2
=

[

J−−
0 ,J++

2

]

+
[

J−−
2 ,J++

0

]

=
[

J−−
0 ,J++

2

]

+
[

J−−
0 ,J++

2

]†

=
1

2
δD2 +

1

2
δD

†
2

= δD, (3.18)

as required by the algebra. We used the hermiticity of δD2 to reach the last line.

4. Order g
3

With the O(g2) solution, we can use the constraints to find the O(g3) solution, which

consists of corrections to the psu(1|1)2 generators. We now present and discuss this O(g3)

solution and its proof, the two-loop dilatation generator that follows, and the lift to the

finite-N dilatation generator.

4.1 The solution

Only the psu(1|1)2 generators, the T, receive corrections at this order. Once again the form

of the solution depends only on the sign of the generator (though recall that now the sign

refers to the commutator with L).

T±
3 = ±

[

T±
1 , x

]

+
[

T±
1 , y

]

+ αT±
1 . (4.1)

Again, the y commutator is a similarity transformation, and it must be the same as that

of the O(g2) solution. α corresponds to the coupling constant transformation

g 7→ g + αg3. (4.2)

As at O(g2), the solution is hermitian, provided y is anti-hermitian. It is difficult to

imagine a simpler solution. Beside the coupling constant transformation and the similarity

transformation, the solution at this order is just a commutator with x, as was the case

for O(g2).

As at the previous order, we use a direct method to prove that this solution satisfies

the symmetry algebra constraints, and the proof is in appendix C.

4.2 Freedom for the O(g3) solution

At this order, we could add gauge transformations to the generators. Furthermore, the

solution satisfies the commutation relations only up to gauge transformations.

The case for homogeneous solutions at this order exactly parallels that of the previous

order. Under a homogeneous modification,

←→
T3

± 7→ ←→
T3

± + δ
←→
T3

±. (4.3)
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In order for the symmetry constraints to remain satisfied, the δT’s must not contribute

to any commutator of the algebra, both for commutators among the psu(1|1)2 generators

and for those with psu(1, 1|2) generators. Again, we have not found any non-trivial homo-

geneous solutions, or ruled them out. However, as for the O(g2) solution, the successful

checks of our solution with field theory computations implies that such a homogeneous

contribution is not part of the field theory solution.

4.3 The two-loop dilatation operator

From (2.7) we can now compute δD4 directly,

δD4 = 2
{−→

T +,
←−
T−

}

4
= 2

{←−
T +,

−→
T−

}

4
. (4.4)

It follows that δD4 is composed only of the T1’s and h, the one-site harmonic number

generator. After setting the similarity transformation y to zero, without loss of generality,

and using the vanishing of the squares of the T’s, we find

δD4 = 2
{−→

T1
+,

[←−
T1

−,
{←−

T1
+,

[−→
T1

−, h
]}]}

+ 2
{←−

T1
−,

[−→
T1

+,
{−→

T1
−,

[←−
T1

+, h
]}]}

= 2
{←−

T1
+,

[−→
T1

−,
{−→

T1
+,

[←−
T1

−, h
]}]}

+ 2
{−→

T1
−,

[←−
T1

+,
{←−

T1
−,

[−→
T1

+, h
]}]}

. (4.5)

In this expression we have left out the coupling constant transformation parameterized by

α in (4.1), which leads to

δD4 7→ δD4 + 2α δD2. (4.6)

However, to match field theory results α must be zero.

4.4 Non-planarity and wrapping interactions

By lifting our expressions for the building blocks of δD4 to their non-planar generalization,

we will construct a candidate for the finite-N δD4. To support our conjecture that this is

the correct solution, we will observe that it accurately includes wrapping interactions. The

two-loop non-planar solution for the su(2) sector (a subsector of the su(1, 1|2) sector) was

found in [25]. In that case, there is a unique lift from the planar to the non-planar theory.

The non-planar action for the one-site generators, including the O(g0) terms and h

are straightforward to obtain. Let the gauge group of the theory have generators tm and

metric gmn. Then, for instance, using the notation of [39]

h =
∞
∑

k=0

h(k)Tr (φ↓
k φ̌

↓
k + φ

↑
k φ̌

↑
k) + h(k + 1)Tr (

←−
ψk

←̌−
ψk +

−→
ψk

−̌→
ψk), (4.7)

where for Xi ∈ {φl
k,

←→
ψk}, we have the expansion Xi = Xm

i tm, and

X̌i = tmgmn δ

δXn
i

,
δ

δXm
i

Xn
j = δijδ

n
m. (4.8)

The T1 also have a natural generalization for the non-planar theory.

−→
T1

+ =
∑

0≤m
0≤k<m

1
√

2(k + 1))
Tr

[−→
ψk, φ

l
m−1−k

]

φ̌l
m
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+
∑

0≤m
0≤k<m

m + 1

2
√

2(k + 1)(m − k)
Tr

{−→
ψk,

−→
ψm−1−k

} −̌→
ψm

+
∑

0≤m
0≤k<m

m − k
√

2(k + 1)(m + 1)
Tr

{−→
ψk,

←−
ψm−1−k

} ←̌−
ψm

+
∑

0≤m
0≤k≤m

1
√

2(m + 1)
Tr

[

φ
↓
k, φ

↑
m−k

] ←̌−
ψm. (4.9)

There is a similar expression for
←−
T1

+, which can be read from (2.19). For the hermitian

conjugates, the T−
1 , simply perform the switch

Xi ↔ X̌i, ∀Xi. (4.10)

Substituting these expressions into the expressions for x, gives its non-planar version. Then

the expressions given for T3 and δD4 become non-planar. Because the proof that the planar

solution satisfies the symmetry constraints is independent of planarity, the non-planar

generalization still satisfies the symmetry constraints.

While we do not have a proof that this is the correct non-planar solution, our solution

accurately includes wrapping interactions, which can be thought of as special cases of non-

planar interactions. Wrapping interactions apply to two-site states, for which the planar

solution and the non-planar generalization are equivalent. Since the T1’s map one site to

two sites or vice-versa, the action of δD4 is well defined even on two-site states. Since

acting with the T+’s on two-site states yields three-site states, two-site states are in the

same multiplets as three-site states. Therefore, adding special wrapping interactions that

only change the anomalous dimensions of two-site states would be inconsistent with the

symmetry constraints.

5. Tests and applications of the solution

Using the solution for the two-loop dilatation operator, we first provide strong evidence that

it is correct via direct diagonalization and comparison to rigorous field theory computations.

We then use our solution to present strong evidence in favor of integrability by computing

the internal S-matrix in the bosonic sl(2) sector and by comparing anomalous dimension

predictions of the Bethe ansatz of [29] with the results of direct diagonalization.

5.1 Two-loop planar anomalous dimensions

Expanding the expression for δD4 in terms of interactions, we find the planar anomalous di-

mensions by direct diagonalization. We first identify the spin chain states of the subspaces

of certain (small) values of classical dimension, R-charge, length, and hypercharge. Then

we apply g2δD2 + g4δD4 to these subspaces and compute its eigenvalues (the anomalous

dimensions) and eigenstates. Again, we have used Mathematica. We check states with

rigorously known anomalous dimensions. These include twist-two operators [43], a pair
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D0 (R,L,B)
(

δD2, δD4

)P

4 (2, 2, 0) (6,−12)+

5 (3, 3, 0) (4,−6)−

6 (2, 2, 0) (25
3 ,−925

54 )+

6 (3, 3, 0) (15
2 ,−225

16 )±

6 (4, 4, 0)
(2.76393,−2.90983)+

(7.23607,−14.0902)+

7 (5, 5, 0)
(2,−3

2 )−

(6,−21
2 )−

7.5 (0, 3,±3
2 ) (10,−245

12 )±

8 (2, 2, 0) (49
5 ,−45619

2250 )+

8 (6, 6, 0)

(1.50604,−0.830063)+

(4.89008,−7.30622)+

(7.60388,−14.8637)+

9 (6, 8,±1)

(1.17157,−0.4895952)−

(4,−5)−

(6.82843,−12.5104)−

9.5 (0, 3,±3
2 ) (133

12 ,−131117
5760 )±

10 (7, 9,±1)

(0.935822,−0.304865)+

(3.30540,−3.44381)+

(6,−10)+

(7.75877,−15.2513)+

10.5 (0, 3,±3
2 )

(761
70 ,−138989861

6174000 )+

(761
60 ,−419501

16000 )±

Table 1: Two-loop spectrum for states with rigorously known planar anomalous dimensions. The

P exponent of the anomalous dimensions gives the states’ eigenvalues under parity. The ± pairs

for P are a consequence of integrability. The ± pairs for B come from switching the two types

of fermions. The twist-two operators are those with length two, the two excitation states satisfy

D0 − L ≤ 2, and the three-fermion states have R = 0.

of states of length three and bare dimension six [44], two excitation states (BMN opera-

tors) [45, 25], and length-three states built from one type of fermion and from derivatives

(in the fermionic sl(2) subsector) [37]. The states we check, given in table 1, are in com-

plete agreement with these previous computations. Therefore, we conclude that we have

found the correct solution for δD4. Since our comparison includes length-two states, we

find confirmation that no additional wrapping terms are needed.

5.2 The two-loop sl(2) S-matrix and diffractionless scattering

We now perform a new two-loop check of the bosonic sl(2) sector Bethe ansatz of [29].

Instead of only checking anomalous dimension predictions, we also verify a key part of its

derivation, the S-matrix. It is straightforward to restrict to the two-excitation sl(2) sector,
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consisting of states composed only of φ↓’s and two or fewer derivatives9. We have computed

the internal S-matrix as in [29], which used ideas introduced in [46] and [47]. A basis for

two excitation states is

|Ψx1x2
〉 = | . . . φ↓

x1

↓

D(φ↓) φ↓ . . . φ↓

x2

↓

D(φ↓) φ↓ . . .〉, (5.1)

where the derivatives appear at sites x1 and x2 of the spin chain. Then, the Schrödinger

equation

H|Ψ〉 = E|Ψ〉, H = g2 δD2 + g4 δD4, (5.2)

is solved by the ansatz

|Ψ〉 =
∑

1≤x1≤x2≤L

(

f−(δx, pi)e
ip1x1+ip2x2 + f+(δx, pi)e

ip2x1+ip1x2
)

|Ψx1x2
〉,

δx = x2 − x1. (5.3)

L is the length of the spin chain, and the pi are the momenta of the excitations which scatter

off each other. Since the Hamiltonian is short-ranged and translationally invariant, for large

δx the solutions of the Schrödinger equation reduce to superpositions of one excitation

eigenstates, proportional to eipx. The S-matrix gives the phase that one excitation’s wave

function acquires when passing the other excitation,

S(p2, p1) =
f+(δx, pi)

f−(δx, pi)
, δx > 1. (5.4)

The inequality reflects that the Hamiltonian has interactions involving at most three ad-

jacent sites. This short-range Hamiltonian also leads to the following ansatz10,

f−(δx > 1) = 1, f+(δx > 0) = S, f−(1) = f−, f±(0) = f0. (5.5)

Using Mathematica, we have solved the Schrödinger equation using this ansatz and our

expression for the dilatation generator. The solution for the energy and the S-matrix is

E = E(p1) + E(p2), E(p) = 4 sin2(
p

2
) − 8g2 sin4(

p

2
) (5.6)

S(p2, p1) = S0 + g2S2

S0 = −eip1+ip2 − 2eip2 + 1

eip1+ip2 − 2eip1 + 1
(5.7)

S2 =
8ieip1+ip2 sin(p1

2 )(sin(p1−3p2

2 ) − 4 sin(p1−p2

2 ) + sin(3p1−p2

2 )) sin(p2

2 )

(1 − 2eip1 + eip1+ip2)2
. (5.8)

To two-loop order, this agrees with the solution given by equations (3.3) and (6.4), (4.27),

and (3.7) of [29].

9Of course, by R-symmetry, the sector with φ↑’s has the same S-matrix and anomalous dimensions.
10For simplicity we drop the pi, but all functions still depend on them. Note that f− and f0 are unphysical.

They will transform non-trivially under a similarity transformation for δD, unlike S and E.
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D0 (R,L,B)
(

δD2, δD4

)P

7 (3, 3, 0) (6,−39
4 )−

7 (4, 4, 0) (6,−21
2 )±

8 (3, 3, 0) (35
4 ,−18865

1152 )±

8 (4, 4, 0)

(4.38277,−5.25026)+

(8.35923,−16.0680)+

(11.5913,−23.1031)+

(23
3 ,−1331

108 )±

8 (5, 5, 0)
(4.72931,−7.01464)±

(7.77069,−14.4229)±

Table 2: Two-loop spectrum of highest weight states in the bosonic sl(2) sector(s) found by direct

diagonalization.

D0 (R,L,B))
(

δD2, δD4

)P

7 (1, 5,±2) (10,−20)−

7.5 (3, 6,±1.5) (8,−14)±

8 (2, 6,±2) (8,−14)+

8.5 (4, 7,±1.5) (7,−12)±

9 (3, 7,±2)

(6.39612,−9.3993)−

(9.10992,−17.1028)−

(12.494,−24.4979)−

9.5 (5, 8,±1.5)
(6,−19

2 )±

(8,−29
2 )±

Table 3: Two-loop spectrum of states in the su(1|1) sector found by direct diagonalization.

At this point, assuming diffractionless scattering and requiring periodicity yields the

Bethe equation for this sector, which can be used to compute anomalous dimensions for

states with arbitrary numbers of excitations, as in [29]. As shown in table 2, we find perfect

agreement between the predictions of the Bethe ansatz and direct diagonalization of the

two-loop dilatation generator. This provides compelling evidence for two-loop integrability

in the bosonic sl(2) subsector.

5.3 The su(1|1) sector

Finally, we provide evidence of integrability including fermions as well. We compute anoma-

lous dimensions for the su(1|1) sector(s), again via direct diagonalization. This sector in-

cludes states made of only one type of φ and only one type of ψ, and no derivatives. Again,

our findings are in complete agreement with those found assuming integrabilty in [29].

These anomalous dimensions were also found by direct diagonalization of the compact

su(2|3) dilatation operator in [26].
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6. Conclusion and outlook

We have found a remarkably simple solution for the two-loop dilatation generator and the

one and one-half loop symmetry algebra of a non-compact sector of N = 4 SYM. The

O(g2) and O(g3) symmetry algebra corrections are given, with appropriate choice of basis

and gauge, by

X±
i+2 = ±

[

X±
i , x

]

, i = 0, 1. (6.1)

x, given by (3.4), only involves the leading O(g1) terms for the psu(1|1)2 generators and

the harmonic numbers that characterize the one-loop dilatation operator. Furthermore,

the two-loop dilatation generator (4.5) generates the two-loop sl(2) S-matrix of the Bethe

ansatz proposal [29], and its anomalous dimensions match both this Bethe ansatz proposal

and the direct field theory calculations of [25, 43, 44, 37]. This is additional very strong

evidence in favor of the two-loop integrability and Bethe ansatz for the su(1, 1|2) sector [30].

Despite the convincing evidence that our solution would be produced by a complete

direct field theory computation, it is unknown if the solution is uniquely determined by

symmetry and Feynman diagram constraints, as is the one-loop dilatation operator [39].

It would be very interesting to identify the order at which the solution is not completely

constrained (if any), and the minimal set of additional constraints required to isolate the

field theory solution.

The structure of the solution suggests additional directions of research. It is natu-

ral to conjecture that the iterative solution we found can be extended to larger sectors,

which necessarily have dilatation generator interactions that do not conserve length and

hypercharge, or to higher loops. Such a solution for the four-loop dilatation generator may

be especially useful. At that order, non-trivial wrapping interactions for two-site states

could be consistent with the symmetry algebra. Because the wrapping interactions are

less constrained by inspecting Feynman diagrams, it would seem impossible to compute

them just using the constraints. However, it is possible that a higher-loop extension of our

iterative solution would not need specific wrapping interactions added to match the field

theory solution.

We suspect that there are expressions involving the same building blocks for the higher

conserved charges due to integrability. Evidence for this was given in [48]. Up to two loops,

Agarwal and Ferretti showed that the first higher charge for the su(2|3) sector could be

written diagrammatically in terms of the dilatation generator. They conjectured that the

diagrammatic expression generalizes to the entire theory. Using the solution for the two-

loop dilatation generator, it is now possible to check whether their solution [48] generalizes

to a non-compact sector.

Finally, this is not the first time iterative structures have appeared in N = 4 SYM.

Planar scattering amplitudes have iterative structure at two and three loops [49, 50]. Also,

following Witten’s work relating gauge theory to a string theory in twistor space [51],

recurrence relations between amplitudes involving different numbers of particles have been

found [52, 53]. The two-loop dilatation generator has some qualitative resemblance to this

recursive structure. The T1 are analogous to the three gluon on-shell amplitudes, and h is
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similar to a Feynman propogator. It would be wonderful if iterative structures could be

used to relate the dilatation generator and scattering amplitudes.

Acknowledgments

I thank my advisor, Niklas Beisert, for pointing me to the su(1, 1|2) sector, for sharing

essential Mathematica code, for suggesting many improvements to this article and for

numerous enlightening and stimulating conversations.

I also thank Joshua Friess for helpful suggestions. This material is based upon work

supported under a National Science Foundation Graduate Research Fellowship.

A. The psu(1, 1|2) commutators

A.1 Matrix representation

The matrix representation for the full psu(2, 2|4) algebra shown in appendix D of [39] can

be restricted to the psu(1, 1|2) sector. As for the full algebra, we parameterize an element

j · J of the algebra by the adjoint vector j. In this case, we split the matrix into 1|2|1
(even|odd|even) rows and columns. We write the representation of u(1, 1|2) as

j · J =











j0 + b − c
2

−→q +↓ −→q +↑ j++

←−q −↑ r0 + b
2 − c

2 r↑↑ ←−q +↑

←−q −↓ r↓↓ −r0 + b
2 − c

2
←−q +↓

−j−− −−→q −↓ −−→q −↑ −j0 + b − c
2











(A.1)

The commutation relations of the generators follow from the matrix representation of

[j · J, j′ · J]. The psu(1, 1|2) algebra follows from dropping B, which is not generated by

any commutators of the other generators, and setting the central charge C to zero. All

physical fields are neutral with respect to C.

We now present a minimal set of commutators; the remaining commutators follow from

hermitian conjugation and from combining commutators presented here. We group these

commutators for later convenience.

A.2 Classical commutators

These commutators only involve generators that receive no quantum corrections.
[

R↑↑,R↓↓
]

= R0,
[

R0,R↑↑
]

= 2R↑↑. (A.2)

A.3 Central charge commutators

These commutators are simpler to deal with at higher orders in g, because R0 receives no

quantum corrections, and because

J0
n = δDn n > 0. (A.3)

[

J0(g),J++(g)
]

= 2J++(g),
[

R0,J++(g)
]

= 0,
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[

J0(g),
−→
Q+↓(g)

]

=
−→
Q+↓(g),

[

R0,
−→
Q+↓(g)

]

= −−→
Q+↓(g),

[

J0(g),
←−
Q+↑(g)

]

=
←−
Q+↑(g),

[

R0,
←−
Q+↑(g)

]

=
←−
Q+↑(g)

[

J0(g),R↑↑
]

= 0. (A.4)

A.4 Commutators with R

[

R↑↑,
←−
Q+↓(g)

]

=
←−
Q+↑(g)

[

R↑↑,
←−
Q−↓(g)

]

=
←−
Q−↑(g),

[

R↑↑,
−→
Q−↑(g)

]

= 0,
[

R↑↑,
−→
Q−↓(g)

]

= −−→
Q−↑(g),

[

R↑↑,J++(g)
]

= 0,
[

R↑↑,J−−(g)
]

= 0. (A.5)

A.5 Plus-plus commutators

[

J++(g),
−→
Q+↓(g)

]

= 0,
[

J++(g),
−→
Q+↑(g)

]

= 0,
[

J++(g),
←−
Q+↑(g)

]

= 0,
[

J++(g),
←−
Q+↓(g)

]

= 0,
{−→

Q+↓(g),
−→
Q+↓(g)

}

= 0,
{−→

Q+↑(g),
−→
Q+↑(g)

}

= 0,
{←−

Q+↓(g),
←−
Q+↓(g)

}

= 0,
{←−

Q+↑(g),
←−
Q+↑(g)

}

= 0. (A.6)

A.6 δD commutators

These commutators, at non-zero order in g, yield a multiple of δD.

[

J−−(g),J++(g)
]

= J0(g),
{−→

Q+↓(g),
←−
Q−↑(g)

}

=
1

2
J0(g) +

1

2
R0,

{−→
Q+↑(g),

←−
Q−↓(g)

}

=
1

2
J0(g) − 1

2
R0,

{←−
Q+↓(g),

−→
Q−↑(g)

}

=
1

2
J0(g) +

1

2
R0,

{←−
Q+↑(g),

−→
Q−↓(g)

}

=
1

2
J0(g) − 1

2
R0. (A.7)

A.7 Plus-minus commutators

{−→
Q+↓(g),

←−
Q−↓(g)

}

= R↓↓,
{−→

Q+↓(g),
−→
Q−↑(g)

}

= 0,
[

J++(g),
←−
Q−↑(g)

]

= −←−
Q+↑(g),

[

J++(g),
−→
Q−↓(g)

]

= −−→
Q+↓(g). (A.8)

B. Proof of the O(g2) solution

We will verify that (3.6) is a solution by checking representatives of the minimal set of com-

mutators given in the last section. We first present some necessary identities. Throughout

this proof, we set y, the similarity transformation, to zero, without loss of generality.
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B.1 Properties of the O(g2) solution

Since h commutes with J0
0 and the R’s, we have

[

x,J0
0

]

= 0,
[

x,R↑↑
]

= 0,
[

x,R↓↓
]

= 0,
[

x,R0
]

= 0. (B.1)

Since h commutes with L, by (2.7)

[x,L] = 0. (B.2)

Next, we define

[

J++, h
]

= j++,
[−→
Q+↓, h

]

= −→q +↓,
[−→
Q+↑, h

]

= −→q +↑,
[←−
Q+↑, h

]

= ←−q +↑,
[←−
Q+↓, h

]

= ←−q +↓ (B.3)

As usual, the conjugates of these new generators are labeled with a minus instead of plus,

and arrows pointing in the opposite direction. A useful simplification depends on the

following vanishing commutators.

{−→
q +↓,

−→
T1

−
}

= 0,
{−→

q +↑,
−→
T1

−
}

= 0,
{←−q +↑,

←−
T1

−
}

= 0,
{←−q +↓,

←−
T1

−
}

= 0. (B.4)

Then, from (3.6) and (3.4) we find

−→
Q2

+↓ =
[←−
T1

−,
{−→

T1
+,

−→q +↓
}]

,
−→
Q2

+↑ =
[←−
T1

−,
{−→

T1
+,

−→q +↑
}]

,

←−
Q2

+↑ =
[−→
T1

−,
{←−

T1
+,

←−q +↑
}]

,
←−
Q2

+↓ =
[−→
T1

−,
{←−

T1
+,

←−q +↓
}]

. (B.5)

The following equalities will be essential.

[

J++
0 , j−−

]

=
1

2
L,

{−→
Q0

+↓,
←−q −↑

}

=
1

4
(2B − L − R0),

{−→
Q0

+↑,
←−q −↓

}

=
1

4
(2B − L + R0),

{←−
Q0

+↓,
−→q −↑

}

= −1

4
(2B + L + R0),

{←−
Q0

+↑,
−→q −↓

}

= −1

4
(2B + L − R0). (B.6)

Finally, we have

{−→
Q0

+↓,
←−q −↓

}

= −1

2
R↓↓,

[

J++
0 ,

←−q −↑
]

= 0 and
[

J++
0 ,

←−q −↓
]

= 0. (B.7)

B.2 Central charge commutators

We check the first commutator in detail.

[

J0,J++
]

2
=

[

J0
0,J

++
2

]

+
[

J0
2,J

++
0

]
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=
[

J0
0,

[

J++
0 , x

]]

+
[

δD2,J
++
0

]

=
[[

J0
0,J

++
0

]

, x
]

+
[

J++
0 ,

[

J0
0, x

]]

= 2
[

J++
0 , x

]

= 2J++
2 . (B.8)

In the second line, we used (A.3), and in the fourth line we used (B.1).

B.3 Commutators with R

Here is one example of these proofs.
[

R↑↑,
←−
Q+↓

]

2
=

[

R
↑↑
0 ,

←−
Q2

+↓
]

=
[

R
↑↑
0 ,

[←−
Q0

+↓, x
]]

=
[[

R
↑↑
0 ,

←−
Q0

+↓
]

, x
]

=
[←−
Q0

+↑, x
]

=
←−
Q2

+↑. (B.9)

We used (B.1) again, as well as the leading order part of (A.5).

B.4 Plus-plus commutators

The commutators of two plus generators vanish at this order since they vanish at leading

order. For example:
{−→

Q+↓,
−→
Q+↑

}

2
=

{−→
Q2

+↓,
−→
Q0

+↑
}

+
{−→

Q0
+↓,

−→
Q2

+↑
}

=
{[−→

Q0
+↓, x

]

,
−→
Q0

+↑
}

+
{−→

Q0
+↓,

[−→
Q0

+↑, x
]}

=
[{−→

Q0
+↓,

−→
Q0

+↑
}

, x
]

= 0. (B.10)

B.5 δD commutators

We proved the first commutator in section 3.3. For the other four commutators one must

change signs appropriately and use (B.5) and (B.6).

B.6 Plus-minus commutators

The commutator of
−→
Q+↓ and

←−
Q−↓ vanishes at O(g2) as required by (A.8). In fact, both

{−→
Q2

+↓,
←−
Q0

−↓
}

and
{−→
Q0

+↓,
←−
Q2

−↓
}

(B.11)

vanish. We will prove this for the first commutator. The proof for the second follows the

same steps. First we need
{−→

q +↓,
←−
Q0

−↓
}

=
{[−→

Q0
+↓, h

]

,
←−
Q0

−↓
}
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=
[

R↓↓, h
]

+
{−→
Q0

+↓,
←−q −↓

}

=
{−→

Q0
+↓,

←−q −↓
}

= −1

2
R↓↓. (B.12)

We used (B.7) for the last line. Using (B.4), we show the first commutator in (B.11)

vanishes.

{−→
Q2

+↓,
←−
Q0

−↓
}

=
{[←−

T1
−,

{−→
T1

+,
−→
q +↓

}]

,
←−
Q0

−↓
}

=
{←−

T1
−,

[−→
T1

+,
{−→q +↓,

←−
Q0

−↓
}]}

=
1

2

{←−
T1

−,
[−→
T1

+,−R↓↓
]}

= 0. (B.13)

Using (B.4), B.5), and

{−→
Q0

+↓,
−→q −↑

}

=
{−→q +↓,

−→
Q0

−↑
}

, (B.14)

one can show that anti-commutator of
−→
Q+↓ and

−→
Q−↑ vanishes.

As a preliminary step for verifying the next plus-minus commutator, we compute

[←−
Q0

−↑, j++
]

=
[←−
Q0

−↑,
[

J++
0 , h

]

]

=
[←−
Q0

+↑, h
]

−
[

J++
0 ,

←−q −↑
]

= ←−q +↑ −
[

J++
0 ,

←−q −↑
]

= ←−q +↑. (B.15)

The last line works because of (B.7). (B.7) also implies that
←−
Q

−↑
2 and J++

0 commute.

Using this and (B.4), we find

[←−
Q−↑,J++

]

2
=

[←−
Q2

−↑,J++
0

]

+
[←−
Q0

−↑,J++
2

]

=
[←−
Q0

−↑,
{−→

T1
−,

[←−
T1

+, j++
]}]

−
[←−
Q0

−↑,
{−→

T1
+,

[←−
T1

−, j++
]}]

=
[−→
T1

−,
{←−

T1
+,

[←−
Q0

−↑, j++
]}]

−
[−→
T1

+,
{←−

T1
−,

[←−
Q0

−↑, j++
]}]

=
[−→
T1

−,
{←−

T1
+,

←−q +↑
}]

=
←−
Q2

+↑. (B.16)

Equivalent steps show that

[−→
Q−↓,J++

]

2
=

−→
Q2

+↓. (B.17)
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B.7 Implied commutators

Since the O(g2) solution we presented (3.6) is hermitian (for y set to zero), like the lead-

ing order representation of the generators, it immediately follows that all the conjugate

equations to those of appendix A are satisfied at this order. The algebra then implies that

the remaining commutators are satisfied. This completes our verification of the symmetry

constraints.

C. Proof of the O(g3) solution

We will first check that the solution (4.1) commutes with the psu(1, 1|2) generators, and

then we will check that it satisfies the psu(1|1)2 algebra. Repeatedly, we will use the

vanishing of the O(g1) commutators without further comment. Again, we set y to zero

without loss of generality. We also set α to zero without loss of generality, since a solution

of the symmetry algebra remain a solution after a coupling constant transformation.

C.1 Commutators with the psu(1, 1|2) generators

C.1.1 Central charge and R commutators

To prove that the commutators of T with the R’s or J0 vanish we need only that the R’s

receive no quantum corrections, (B.1), (A.3), and

[T1, δD2] = 0. (C.1)

This equation can be inferred from (2.7) or from the fact that δD commutes with all other

generators.

C.1.2 Plus-plus commutators

The proof for the commutators of
←−
T + or

−→
T + with any of the plus psu(1, 1|2) generators

works in the same manner as in appendix B.4, since commuting with x generates the first

quantum correction to all generators involved.

C.1.3 Minus-plus commutators

We will show how these commutators vanish using
←−
T−. With appropriate switching of

psu(1, 1|2) generators, the same proofs work for
−→
T−. Using (B.5), we find

{←−
T−,

−→
Q+↓

}

3
=

{←−
T1

−,
−→
Q2

+↓
}

+
{←−
T3

−,
−→
Q0

+↓
}

=
{←−
T1

−,
−→
Q2

+↓
}

−
{[←−

T1
−, x

]

,
−→
Q0

+↓
}

=
{←−
T1

−,
−→
Q2

+↓
}

+
{←−
T1

−,
[−→
Q0

+↓, x
]}

= 2
{←−

T1
−,

−→
Q2

+↓
}

= 2
{←−

T1
−,

[←−
T1

−,
{−→

T1
+,

−→q +↓
}]}

= 0. (C.2)

– 24 –



J
H
E
P
0
2
(
2
0
0
6
)
0
5
5

The last equality follows from the general identity,

{Q, [Q,R]} = 0 if Q2 = 0. (C.3)

The same reasoning shows that the commutator of
←−
T− with

−→
Q+↑ vanishes.

Since
←−
T− commutes with

−→
T− and

←−
T +, (B.4) and (B.5) imply that

{←−
T−,

←−
Q+↑

}

3
= 0 and

{←−
T−,

←−
Q+↓

}

3
= 0. (C.4)

The commutator of
←−
T− with J++ actually is already fixed to zero at this order be-

cause J++ is generated by
−→
Q+↓ and

←−
Q+↑. We show this using the commutators given in

appendix A,

{−→
Q+↓,

←−
Q+↑

}

=
{−→

Q+↓,
[←−
Q−↑,J++

]}

=
[{−→

Q+↓,
←−
Q−↑

}

,J++
]

=

[

1

2
J0 +

1

2
R0,J++

]

= J++. (C.5)

C.1.4 Implied commutators

Using hermiticity and closure of the algebra, one can conclude that at O(g3) all of the

psu(1|1)2 generators commute with all of the psu(1, 1|2) generators.

C.2 Commutators among the psu(1|1)2 generators

Using hermiticity, it will be sufficient to check the following equations:

[

L,T+
]

3
= T+

3 , (C.6)
{−→

T +,
←−
T−

}

4
=

{←−
T +,

−→
T−

}

4
, (C.7)

{−→
T +,

−→
T−

}

4
= 0, and

{−→
T +,

←−
T +

}

4
= 0, (C.8)

(
−→
T +)24 = (

←−
T +)24 = 0. (C.9)

Both sides of (C.7) are equal to 1
2δD4 by (2.7).

C.2.1 Commutators with L

(C.6) follows from the corresponding leading order commutator and (B.2).

C.2.2 δD commutators

In fact,
{−→

T3
+,

←−
T1

−
}

=
{←−
T3

+,
−→
T1

−
}

. (C.10)
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With the conjugate equation, this implies (C.7). Here is the proof of (C.10).

{−→
T3

+,
←−
T1

−
}

=
{[−→

T1
+, x

]

,
←−
T1

−
}

=
{[−→

T1
+,

{−→
T1

−,
[←−
T1

+, h
]}]

,
←−
T1

−
}

=
{[−→

T1
−,

{←−
T1

+,
[−→
T1

+, h
]}]

,
←−
T1

−
}

=
{−→
T1

−,
[←−
T1

+,
{←−

T1
−,

[−→
T1

+, h
]}]}

=
{−→
T1

−,
[←−
T1

+, x
]}

=
{−→
T1

−,
←−
T3

+
}

. (C.11)

To obtain the second, and second to last lines we have used (3.4) and applied the algebraic

identity

[Q, {Q,S}] = 0 if Q2 = 0. (C.12)

The proof also uses repeatedly the vanishing of the commutators of non-conjugate T1’s.

C.2.3 Non-conjugate T commutators

The same reasoning as in the previous section works to show that
−→
T + and

−→
T− commute.

{−→
T +,

−→
T−

}

4
=

{−→
T3

+,
−→
T1

−
}

+
{−→
T1

+,
−→
T3

−
}

=
{[−→

T1
+, x

]

,
−→
T1

−
}

−
{−→

T1
+,

[−→
T1

−, x
]}

=
{[−→

T1
+, x

]

,
−→
T1

−
}

+
{[−→

T1
+, x

]

,
−→
T1

−
}

= 2
{[−→

T1
+, x

]

,
−→
T1

−
}

=
{[−→

T1
+,

{−→
T1

−,
[←−
T1

+, h
]}]

,
−→
T1

−
}

=
{[−→

T1
−,

{←−
T1

+,
[−→
T1

+, h
]}]

,
−→
T1

−
}

= 0. (C.13)

For the commutator of
−→
T + with

←−
T +, see appendices B.4 or C.1.2.

The squares of
−→
T + and

←−
T + vanish at O(g4) for the same reasons that

−→
T + commutes

with
←−
T + at this order.
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